Please note this event may be photographed

Introduction To Binary
Exploitation

Part 1: The background

The Legal Bit

The skills taught in these sessions allow identification and exploitation of security
vulnerabilities 1n systems. We strive to give you a place to practice legally, and can point
you to other places to practice. These skills should not be used on systems where you do
not have explicit permission from the owner of the system. It is VERY easy to end up in
breach of relevant laws, and we can accept no responsibility for anything you do with the
skills learnt here.

If we have reason to believe that you are utilising these skills against systems where you are
not authorised you will be banned from our events, and if necessary the relevant authorities
will be alerted.

Remember, if you have any doubts as to if something 1s legal or authorised, just don’t do it
until you are able to confirm you are allowed to.

Code of Conduct

& Before proceeding past this point you must read and agree our Code of Conduct, this is a
requirement from the University for us to operate as a society.

& If you have any doubts or need anything clarified, please ask a member of the committee.

¢ Breaching the Code of Conduct = immediate ejection and further consequences.

& Code of Conduct can be found at https://wiki.shefesh.com/doku.php?id=code_conduct

Before We Begin

Before We Begin

We will be assuming use of Linux based operating system

We will be using the IA-32/x86 (32-bit) architecture

Don’t worry if you struggle to get some of this

This presentation will be an information dump, you DO NOT need to remember all of it
I've tried to cover everything needed for next week, but I may have missed something

So don't hesitate to ask!

@
@
@
@
@
@
@

No exploits today!

Registers

Registers - Overview

Essentially a variable for the cpu

Fixed number exist

Only place maths can be carried out

Often hold pointers to other memory

Values will often move between registers and other memory
2 main types

General

@
@
@
@
@
@
@
@

Special

@
@
@
@
@
@
@
@
@

Registers - General Purpose

x86 has 8, can be broken from 32-bit to 16-bit

eax - Used for function returns, also specially used in certain maths
ebx - No special uses, often holds common values for optimisation
ecx - Sometimes used as a pointer or loop counter

edx - Often used for short term variables

esi - Used for pointers, often source data in transfers

ed1 - Same as es1, but often for destination data

ebp - Used as a frame pointer, or general purpose in optimised code

esp - Pointer to the top (bottom?) of the stack

Registers - Special

& Flags - Each bit has a specific meaning, Indicates something about previous operation
& eilp - Stores address of next instruction to execute
& We are interested in EIP for our exploits

& As it controls the programs control flow

Memory

@
@
@
@
@
@
@
@

Memory - Overview

When we talk about memory, we mean RAM not storage
When a binary is executed it needs to be loaded into memory
Stores instructions and data

We address with hex, e.g Oxbfab15ce

Operating system maps virtual memory onto physical
Remember at the end of the day,

Data, instructions, are all just Os and 1s (we'll look at them 1n hex)
EVERYTHING is just data (example later)

Memory - Physical vs Virtual

Virtual memory Physical
(per process) memeory

Physical memory is the memory that actually exists
Your RAM .
Virtual memory 1s an abstraction

Every process 1s given a mapping of virtual memory
Gives process illusion of full access to memory

Often larger than then physical memory

@
@
@
@
@
@
@

Uses paging to only load required data into RAM

https:/ /en.wikipedia.org/wiki/ Virtual_me
mory#/media/ File:Virtual_memory.svg

Memory - Layout

Low Addresses

The heap - Where dynamically allocated memory goes

text
& Process memory 1s segmented into various sections .data
& .text - Basically where a programs code i1s .bss
& .data - Initialised global variables Heap
& .bss - Uninitalised global variables G"TWS
@
@

The stack - Contains details about subroutines (functions) of a program

Unused Memory

High Addresses

Memory - The Heap

Used in dynamic memory allocation

Starts at low addresses and grows to high

Malloc/free etc (C functions)

Persists after calling routine

Forgetting to free() is a primary cause of a memory leak

Various vulnerabilities utilise the heap

@
@
@
@
@
@
@

But not really relevant for us yet!

Memory - The Stack

Data Element Data Element |

Made up of various "stack frames"

Data Element Data Element |

& Used for data in program functions §

& Last in First out (LIFO) structure —
. Last In - First Out

& Grows from high memory to low Pop

@ Stores Iocal Va'ria'bles Data Element Data Ele;ms;m I

@

@

The exploits we are looking at use the stack oata Sement | Outa Eloment |
Stack Stack

https:/ /www.tutorialspoint.com/data_structures_algorithms/s
tack_algorithm.htm

Memory - Stack Frames

& Collection of data for one function call
¢ Includes - return address, argument variables, local variables, saved registers

& The important parts for us

¢ Local variables and the return address BOTH reside on a stack frame parameters
return address
& The return address ends up in the EIP register! local variables
parameters
& We'll see why this 1s important next week Note: LIFO return address
local variables
means p was
declared
BEFORE q parameters

return address
local variables

https:/ /www.cs.auckland.ac.nz/
software/ AlgAnim/stacks.html

An Aside - Endianness

The order in which bytes are combined into larger values Note: We are using hex, 0x13 = 19 in

: : o : decimal. 2 hex digits = 1 byte
Big-endian - Most significant byte 1s first

Little-endian - Least significant bytes is first Second Note: The Ox is just notation
We will be using Little-endian
0x12345678 is stored as

0x78 0x56 0x34 0x12
Push bytes in reverse order, but DON’T flip the bytes themselves

@
@
@
@
@
@
@

An Aside - PLT/GOT

Procedure Link Table / Global Offset Table

Basically instead of loading all the code into physical memory instantly
These tables are pointers/offsets to them

Before code 1s needed its memory address will be its key in the table

When its needed that key points it to the real memory!

@
®
@
®
@
@

Will become more apparent later

Code: : GOT:

0XXXXXXXXX

call f@plt mov r, f@got
jmp -~

https:/ / nullprogram.com/blog/2018/05/27/

Relevant C

C - Basics

¢ We only need to understand some basics

¢ We'll assume knowledge of basics such as if, while etc

& Basically I'm going to assume basic programming knowledge
¢ Can seem intimidating

& But for our purposes it's fairly simple

O O SON SORE O E IOR IO

C - Varnables

Pretty simple
Various types

int, char, float, double

"Numeric" types can be signed or unsigned

Also short or long
Arrays are known as "Buffers"
Are 0 indexed, last value index = (len-1)

Various sizes and values

Type

char
unsigned char
signed char
int
unsigned int
short

ong

unsigned long
float

double

Long double

int —

Storage size

1 byte

Value range

Table from https:/ / intellipaat.com/ tutorial/ c-tutorial / c-data-types/

C - Strings

& Declared as a buffer (array) of characters
& Null terminated (\0 or 0x00 1n hex)
& So max chars is [Declared size - 1]
¢ Only certain functions are important right now
& gets - gets(char *str) ®00
& scanf - scanf(const char *format, ...)
char text[16] = "HL i{'m a buffer"
& strcpy - strept(char *dest, const char *src) char input[16];
char inputTwo[16];
& printf - printf(const char *format, ...) char copy[16];

gets(input);
scanf("%s", inputTwo);

strcpy(copy, argv[1l]);

printf("%ss", text);

C - Pointers

& Variables have memory locations
& Can get the memory address of a variable with &
& Pointers are variables whose value 1s the address of another variable
& Declared using * 000
int y = 4;
int *z;

:/tmp# . /point

printf("value of y: %d\n", y);
value of y: 4

address of y: 9acldcdc printf("address of y: %x\n", &y);
address of y (eguiv of &y): 9acldcdc
address of z: 9acldcd® z = &yj;

value of y (equiv of y): 4 .
printf("address of y (equiv of &y): Sx\n", z);

printf(“address of z: %x\n", &z);

printf(“value of y (equiv of y): %d\n", *z);

x86 Assembly

x86 - Overview

Assembly 1s a low level programming language

Generally architecture specific

We will be covering some basic assembly calls

You don’t need to know them by heart, we’re not expecting you to write assembly!
2 Major syntaxes

AT&T vs Intel

We will use intel

@
@
@
@
@
@
@
@

Because I prefer it

x86 - Intel Syntax

¢ Destination comes before source, e.g move <dest> <source>

& Parameter size can be derived from name of register

& Effective address arithmetic in square brackets e.g [eax + 4]

& Assembler automatically detects symbol types, e.g registers, constants

& Use suffixes to declare types if cant be derived

x86 - Intel Syntax - Data Formats

& If you need to declare a suffix they are
& byte prt - 1 byte

& word ptr - 2 bytes

& dword ptr - 4 bytes

x86 - Data movement

mov <opl> <op2>

& Copies data from second operand (register/memory contents, or constant) into location
represented by first operand (register/memory)

& Cannot copy straight from memory to memory
push <opl>

& Places operand onto top of the stack

pop <opl>

& Removes top item from stack and places it in location given by operand

x&86 - Data Movement ctd

lea <opl1> <op2>

& Takes address from second operand and places it in register specified by first operand
& Effectively generates a pointer to a memory region

xchg <opl> <op2>

& Swap the contents of destinations specified by operands 1 and 2

xX86 - Arithmetic

add <opl> <op2>

& Adds together values given by 2 operands

& Storing result in first operand

¢ Only one operand may be a memory location
sub <opl> <op2>

& Subtracts value of second operand from first
& Stores result in first

¢ Only one operand may be a memory location

x86 - Arithmetic ctd

inc/dec <opl1>

¢ Increments/Decrements contents of operand by 1

imul <opl> <op2> <op3>

& First operand must be a register, 3rd operand is optional
& With 2: multiplies opl and op2, stores in opl

& With 3: multiplies op2 and op3, stores in opl

idiv <opl>

& Treats edx:eax as 64-bit int

& Divides by operand and stores in edx

x86 - Logic

and/or/xor <opl> <op2>

& Carries out the respective logical bitwise action

& Stores result in locations given by opl

& XOR 1s particularly useful, as xoring a register with itself clears it
not <opl>

& Flips all bit values in operand (1->0, 0->1)

neg <opl>

¢ Twos complement negation of operand contents

x86 - Logic ctd

shl/shr <opl> <op2>
& Shifts first operands bits left or right
& Amount of bits to shift by specified by second operand

& Pads resulting empty bit positions with 0

x86 - Control Flow

nop

¢ Does nothing, just move onto the next instruction

& Often used to pad to word boundaries

jmp <opl>

& Sets EIP to address given in operand

& Effectively changes next instruction

j[condition] <opl>

& Based on result of last arithmetic operation

& Conditions include, equal, not equal, was 0, greater than, less than etc
& If condition is met, acts like normal jmp

& Else acts like nop

x86 - Control Flow ctd

cmp <opl> <op2>

& Subtracts values given by op2 from opl but doesn’t store it
& Effectively just sub without the storage phase

¢ Commonly used before a j[condition]

call <opl>

& Pushes current location onto stack

& Then jmp to the location given in opl

ret

& Pops the stack and jumps to the location, call/ret are used together to implement
subroutines

x86 - Control Flow ctd

int <opl>

& Generates a software interrupt of type dictated by opl
¢ Important ones are

& 1int 3 - Used by debuggers to create breakpoints

& 1int 80 - Triggers a syscall

sysenter

& A better (slightly faster) way to trigger a syscall

Useful Python

Useful Python

:~# python -c "print('hello there')"

¢ Run bits of python from the command line - hello there _

® python -c "print('hello there')" AAAAAAAAAEEiﬁEiEEEEA -C "print('A'*20)"
eRepcaings :~# pythﬂ-n -c "print('\x90\x42\x41\x43")"
& print("A'*100) UBAC

¢ Use hex bytes

& print('\x90\x42\x41\x43")

¢ Useful modules - pwntools, requests, sockets, struct

¢ Run as args

& ./binary $(python -c "print('arg')")

Debugging With GDB

GDB - What 1s GDB?

A debugging tool for programs written in many languages
Can disassemble assembled binaries

Monitor execution

Change stuff - modify memory, etc

Either run the binary with gdb, or attach to already running

@
@
@
@
@
@

We will run with gdb

Note: string.h wasn’t needed in the final version of this, but I'd Note on 64-bit kali you need to install "libc6-dev-i386" to compile
already taken screenshots with memory addresses and didn’t

want them to change
GDB - Our Binary

1 #include <stdio.h=>

2 #include <string.h> 40 void helloNoName() {

3 #include =stdlib.h= a1

4 : F-. [[T 1 [l
5 void helloNoName(): 42 printf("ss\n", "Hello there!");
6 void helloName(char *name): 43

7 int math(int one, int two); 44 1}

8 e 45

9 int main(int arge, char **argv) { 46 void helloName(char *name) {

10

11 if(argc = 3) { 47 -

12 48 printf({"Hello %s!yn", name);

13 printf(“Usage: %s [int] [int] <=name=\n", argv[©]); 49

14 exit(1); 50 }

15

16 } o1 . . .

17 52 int math(int one, int two) {

18 if({argec < 4) { 53

19 54 int newOne = one + 10;

20 helloNoName () ; 55 int newTwo = two + 12;

21

22 } 56

23 else { 57 return (newldne * newTwo);

24 58 §

25 helloName(argv[3]);

26 . .

o7 } Available at: https:/ /pastebin.com/BGw48akE2
p:

29 int one = (int) *argv[1l];

30 int two = (int) *argv[2];

31

32 int result = math{one, two);

33

34 printf(*Result: %d\n", result); gcc gdbtest.c -o gdbtest -fno-stack-protector -z execstack -m32
> turn o Note: ASLR must also be turned off (this is default in kal)
37

https://pastebin.com/BGw48aE2

®
@
@
@
@
@
@

GDB - Our Binary ctd

Lets look at what happens when we run it
How about with a name this time

This time lets run it wrong

What if I don’t use an int?

Remember earlier?

The example of everything just being data?

In memory there is no distinction between types!

:/tmp# . /gdbtest 1 3
Hello there!
Result: 3717

:/tmp# . /gdbtest 45 6 jack
Hello jack!
Result: 4092

:/tmp# ./gdbtest 45
Usage: ./gdbtest [int] [int] <name=

:/tmp# ./gdbtest notanumber 4
Hello there!
Result: 7680

GDB - Opening

Simply call gdb with the binary as a parameter

Can also attach to running process

Easy to run process

Note: The default gdb option is to use AT&T
assembly syntax, you can change this with

set disassembly-flavor intel

1 have this in ~/.gdbinit so I wont be doing it
live

:/tmp# gdb ./gdbtest
GNU gdb (Debian 8.1-4+bl) 8.1
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html=
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86 64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/=.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Readini symbols from ./gdbtest...{(no debugging symbols found)...done.
{gdb)

(gdb) run 1 8 jack

Starting program: /tmp/gdbtest 1 8 jack
Hello jack!

Result: 4012

[Inferiﬂr 1 (process 10373) exited normally]

GDB - Inspecting Binaries

& Look at functions

¢ But remember, before the binary has been run

{(gdb) info functions
All defined functions:

& They aren't the true addresses

® After a run

¢ Note address changes!

® And all the new ones

¢ Don't worry, most don’t matter

Before a run

B

Mon-debugging symbols:

Ox00001000
Ox00001030
Ox00001040
Ox00001050
Ox00001060
Ox00001070
Ox00001080
Ox000010cd
Oxoeo0lede
Ox00001110
Ox00001160
Ox000011bo
Ox000011b5
Ox000011b9
Ox00001281
Ox0p00l2ac
Ox0ee0l2da
Ox00001305
Ox00001309
Ox00001310
Ox00001370
Ox0O0e1374

_init

printf@plt

puts@plt

exit@plt
~_libc start main@plt
_cxa Tinalize@plt
_start
__x86.get pc thunk.bx
deregister tm clones
register tm clones
~_do global dtors aux
frame dummy
__x86.get pc thunk.dx
main

helloNoName

helloName

math

_ xB6.get pc thunk.ax
_ xB86.get pc thunk.si
~ libc csu init
~_libc ecsu fini

_fini

All defined functions:

Non-debugging symbols:

After a run

0x56556000 init

Ox56556030 printf@plt

Ox56556040 puts@plt

0x56556050 exit@plt

0x56556060 _ libc_start _main@plt
Ox56556070 cxa Tinalize@plt
Ox56556080 start

0x565560c0 x86.get pc thunk.bx
0x565560d0 deregister tm clones
0x56556110 register tm clones
0x56556160 do global dtors aux
0x565561b0 frame dummy

0x565561b5 x86.get pc thunk.dx
0x565561b2 main

0x56556281 helloNoName

0x565562ac helloName

0x565562da math

0x56556305 x86.get pc_thunk.ax
0x56556309 x86.get pc_ thunk.si
0x56556310 libc csu init
0x56556370 _ libc_csu_fini
0x56556374 _fini

OxT7fd5010 dl catch exception@plt
Oxf7fd5020 malloc@plt

Oxf7fd5030 dl signal exception@plt
Oxf7fd5040 calloc@plt

Oxf7fd5050 realloc@plt

Oxf7fd5060 dl signal error@plt
0xf7fd5070 dl catch error@plt
Oxf7fd5080 free@plt

oxf7fddse® dl rtld di serinfo
oxf7fe4830 dl debug state
0xT7fe60a0 dl _mcount

0xT7fe6980 dl get tls static info
OxT7fe6a70 dl allocate tls init
OxT7fe6cdd dl allocate tls
OxT7fe6dl® dl deallocate tls
OxT7fe6Tf0 _ tls get addr
OxT7fe7040 _ tls_get addr
OxT7fe7420 dl make stack executable

Oxf7fe76e0
exf7fea7le
exf7fe9sloe

---Type <return= to continue, or q <return> to quit---

dl_find dso for object
dl exception create
~dl_exception create format

Note: I'll be doing this AFTER a run

GDB - Disassembling Binaries

Lets look at some

This shows the assembly
gdb will try and be helpful

E.g resolving calls to there functions
(gdb) disas helloNoName

Dump of assembler code for function helloNoName:

Ox56556281 <+0=:
0x56556282 <+1=:
Ox56556284 <+3=:
Ox56556285 <+4>:
Ox56556288 <=+7=:
Bx5655628d <+12>:
Ox56556292 <+17=:
Ox56556295 <+20>:
Bx5655629b <+26>:
0x5655629c <+27=:
Ox565562%e <=+29=:
Bx565562a3 <+34>:
Ox565562a6 =4+37>:
0x565562a7 <+38=>:
Ox565562aa <+41=:
Bx565562ab <+42>:
End of assembler dump.

push
mov
push
sub
call
add
sub
lea
push
mov
call
add
nop
mov
leave
ret

ebp

ebp,esp

ebx

esp,0x4

0x56556305 < x86.get pc thunk.ax=
eax,0x2d73

esp,0xc

edx, [eax-0x1fce]

edx

ebx,eax

0x56556040 <puts@plt=
esp,8x1e

ebx,DWORD PTR [ebp-0x4]

9x565561b9
9x565561bd
0x565561co
0x565561c3
0x565561c4
0x565561cH
0x565561c7
0x565561c8
0x565561c9
0x565561cc
9x565561d1
9x565561d7
©x565561d9
©x565561dc
©x565561de
Ox565561el
Ox565561e3
Ox565561e6
Ox565561e7
0x565561ed
0x565561ee
0x565561f0
0x565561f5
0x565561f8
0x565561fb
0x565561fd
Ox565561TT
0x56556204
0x56556207
0x56556209
0x5655620e
0x56556210
0x56556213
0x56556216
0x56556218

(gdb) disassemble main
Dump of assembler code for function main:

<+@=>:
wtid=
=+ 7=

<+10=:
<+11=:
<+13=:
<+14=:
<+15=:
<+16=:
<+19=:
<+24=:
<+30>:
<+32>:
<+35>:
<+37>:
<+40>:
<+42>:
<+45>:
<+46>:
=+52=:
=+53=:
=+55=>:
=+60=:
=+63=:
=+66=:
=+68=:
=+70=:
=+75=>:
=+78=:
=+80=:
=+85>:
=+87=:
=+90=:
<+93>:
<+95>:
---Type =<return> to continue, or q <return= to quit---l

lea
and
push
push
mov
push
push
push
sub
call
add
mowv
cmp
ig
mowv
mowv
sub
push
lea
push
mowv
call
add
sub
push
mowv
call
cmp
jg
call
jmp
mov
add
mov
sub

ecx, [esp+0x4]

esp, OxTrfffffo

DWORD PTR [ecx-0x4]

ebp

ebp,esp

esi

ebx

ecx

esp,0xlc

0x56556309 < x86.get pc_thunk.si=
esl,Dx2ezf

ebx,ecx

DWORD PTR [ebx],0x2
Px56556204 <main+75=
eax,DWORD PTR [ebx+0x4]
eax,DWORD PTR [eax]
esp,0x8

eax

eax, [esi-0x1ff8]

eax

ebx,esi

0x56556030 <printfeplt=
esp,0x10

esp,0xc

Ox1

ebx,esi

0x56556050 <exit@plt=>
DWORD PTR [ebx],0x3
Px56556210 <main+87=>
Px56556281 <helloNoMName=
0x56556224 <maln+107/=
eax,DWORD PTR [ebx+Bx4]
eax,0xc

eax,DWORD PTR [eax]
esp, 0xc

Note: I'll be doing this AFTER a run

GDB - Breakpoints

(gdb) break helloName

& We saw earlier, helloName() is at 0x565562ac .
0 Breakpoint 1 at 0x565562b0
& Lets pause execution at it
D A (that oot) (gdb) break *@x565562ac
ways to pause (that we will look at now anywa .
s ALY, Breakpoint 1 at @x565562ac
& give gdb a * before 0x to indicate it 1s an address . :
(gdb) run 1 2 jack
& But they have different addresses!? Starting program: /tmp/gdbtest 1 2 jack
¢ Lets run an see what happens on each Breakpoint 1, ©x565562b® in helloName ()
(gdb) run 1 2 jack
¢ They both break at the start of helloName() Starting program: /tmp/gdbtest 1 2 jack
& Because pointers Breakpoint 1, ©@x565562ac in helloName ()
@

GDB AUTOMATICALLY BREAKS ON SEG FAULT!!!

Breakpoints can be cleared, disabled and enabled. See later cheat sheet

& So we're 1in a break point

& Lets inspect the current state of the process

¢ The registers?

& How about the stack?

& This will become very useful next week!

Can reference registers with §

(gdb) x/52x %esp
Bxffffd3lc:
exffffd3zc:
Bxffffd33c:
Bxffffd34dc:
Bxffffd35c:
xffffd36c:
Bxffffd37c:
Bxffffd38c:
Bxffffd3oc:
exffffd3ac:
@xffffd3bc:
Bxffffd3cc:
ﬂxffffg3dc:

(gdb) info registers

eax
ecx
edx
ebx
esp
ebp
esi
edi
eip
eflags
cs

55

ds

es

fs

gs

Ox56556221
Bx565561d1
Bx56556353
axffffd37e
Bxf7de8b4l
OxT7desb4l
axffffd394
Oxffffffff
exf7faBooo
Ox00000000
Bx56556080
x56559000
Bx565560b1

Note: I'll be doing this AFTER a run

GDB - Look at what happened

Ox565562ac <helloName=

xffffdsa6 -10842

Oxffffd37e -11408

Oxffffd394 -11372

Oxffffd37e -11408

Bxffffd3lc Bxffffd3lc

axffffd3ss axffffd3s8

Bx56559000 1443448000

Oxf7fagooe -134578176

Ox565562ac

0x296 [PF AF SF IF]

Bx23 35

0x2b 43

Bx2b 43

Bx2b 43

Oxe (0]

Ox63 99
xffffdsa6 BxT7Tagooon
exf7fag3fc Ox56559000
Ox00000004 exffffd4ed
Ox00000000 extf7fagooe
Oxf7Tagooon BxT7Tagooon
Ox00000004 exffffd4ed
Ox0p000001 Ox00000000
extf7ffdeoe Ox00000000
Ox0O00O0B0 Bxb954elc3
Ox00000000 Ox00000000
Ox00000000 Bxt7fes590
Ox00000004 Ox56556080
Bx565561b9 Ox0B00O004

Ox00000000
exffffd4als
exffffd4a1s
Ox00000000
Ox00000000
exffffd4als
extf7fagooe
extf7fagooe
OxThedd7d3
0x00000004
ext7fedddo
Ox00000000
axffffd4e4d

GDB - Carrying On

¢ Once you're done with the break
¢ You want to carry on execution

& Until the next break (or just run)

(gdb) step

Single stepping until exit from function helloName,
which has no line number information.

Hello jack!

©x56556221 in main ()

GDB - Useful Commands

A good cheat sheet https://tinyurl.com/y8ndpbya (for pure gdb)

Set gdb to follow child process on fork()
set follow-fork-mode child

Set disassembly mode to intel

set disassembly-flavor intel

Backtrace execution

backtrace full

Conditional break!

@
@
@
@
@
@
@
@
@

break <where> if <condition>

https://tinyurl.com/y8ndpbya

GDB - Plugins

& Some plugins provide extra functions for gdb

& 2 big ones

& PEDA & GEF

& I personally prefer PEDA for normal use (although I'm considering swapping)
& But GEF has more options, e€.g supports more architectures

¢ We wont be using these yet, but keep them 1n mind

@

(Especially for HackBack!)

Conclusions

Conclusions

& That was a lot of information

¢ Don’t worry if you don’t get it all
¢ Or if you forget some!

& Hopefully I've covered everything

& Next week we'll be breaking binaries

