Please note this event may be photographed

Introduction to Binary
Exploitation

Part 2: Stack Overflows

The Legal Bit

The skills taught in these sessions allow identification and exploitation of security
vulnerabilities 1n systems. We strive to give you a place to practice legally, and can point
you to other places to practice. These skills should not be used on systems where you do
not have explicit permission from the owner of the system. It is VERY easy to end up in
breach of relevant laws, and we can accept no responsibility for anything you do with the
skills learnt here.

If we have reason to believe that you are utilising these skills against systems where you are
not authorised you will be banned from our events, and if necessary the relevant authorities
will be alerted.

Remember, if you have any doubts as to if something 1s legal or authorised, just don’t do it
until you are able to confirm you are allowed to.

Code of Conduct

& Before proceeding past this point you must read and agree our Code of Conduct, this is a
requirement from the University for us to operate as a society.

& If you have any doubts or need anything clarified, please ask a member of the committee.

¢ Breaching the Code of Conduct = immediate ejection and further consequences.

& Code of Conduct can be found at https://wiki.shefesh.com/doku.php?id=code_conduct

Stack Overtlows

Stack Overtlows - Remember The Stack?

¢ Data in program functions
¢ Last in First out (LIFO)

& Grows high to low

& Data 1s in stack frames

¢ And now we're going to exploit them!

"\, Last In - First Out /
P

Data Element
Data Element
Data Element
Data Element

Data Element

Stack

| P
Data Element
|

Data Element

Data Element
|

|
Data Element |
|

Data Element
|

Stack

https:/ /www.tutorialspoint.com/data_structures_algorithms/s
tack_algorithm.htm

Low Addresses text

.data
.bss

Heap

Grows

!

Unused Memory

Grows

Stack

High Addresses

Stack Overflows - Stack Frame Layout

The local variables are on the stack frame
Along with the return address
Return address ends up in EIP register (The one that controls execution)

Remember, data will be PUSHED onto the stack

E.g argl went on first, local var 3 last

@
@
@
@
@
& Can anyone guess the potential problem here?

Caller's frame
Argument 2
Return Address

Saved Y%ebp £——9.ebp
Current Frame

“YoESp

https:/ /i.stack.imgur.com/ XDoh3.png

@
@
@
@
@
@
@
@

Stack Overtlows - Remember Butters?

This first pushes space (4 bytes) for the int to the frame 00

Then 16 bytes for the char buffer _
tnt number;

What if we give it more than 16 bytes? char buf[16];

If we imagine that "number" 1s "local var 2"

And "buf" is "local var 3"

What if we give "buf" 20 bytes of data?

It will OVERFLOW into the space for "number" Caller's frame

Anyone see where this 1s going? Return Address

Saved Y%ebp £——9.ebp

Current Frame

“YoESp

https:/ /i.stack.imgur.com/ XDoh3.png

@
@
@
@
@
@
@
@
@

Stack Overflows -Owning The Program

If we can control EIP

We can control the next instruction
And redirect execution

EIPs value comes from the stack
The "Return Address"

If we overflow a variable enough
We can overwrite EIP

And then we own the program

That is a stack overflow.... But what do we do with it?

Argument 1
Caller's frame
Argument 2
‘ Return Address

Current Frame

Saved Y%ebp £——9.ebp

‘ %hesp

https:/ /i.stack.imgur.com/ XDoh3.png

Stack Overflows - Controlling The Program

& Now we can redirect execution

& We need something to redirect it too

¢ We may want to call a function already in the program?
& But more often than not, we pair with shellcode

¢ Which we will look at now!

Shellcode

Shellcode - What 1s 1t?

& Shellcode is the payload we want to execute
¢ We redirect execution into the shellcode to run it
& Often the hex representation of instructions

¢ This executes execve to spawn a shell

Shellcode - What Can 1t do?

Pop a shell

Spawn a reverse shell

Elevate privileges

Add a user

Well....anything really
http://shell-storm.org/shellcode/

@
@
@
@
@
@
@

Msfvenom

http://shell-storm.org/shellcode/

Shellcode - Where Can We Put It

There are 2 common places to store shellcode
In the buffer, before the EIP overwrite

: : , Overwritten
Where we point EIP back into the buffer Padding Shellcode

EIP

(Sometimes shellcode goes after EIP)
Or 1in an environments variable
It 1s possible to locate where an environment variable will be in memory!

https://github.com/Partyschaum/haxe/blob/maste

@
@
@
@
@
@
@
@

Then point EIP at the environment variable

Padding Over;.lflr;itten

https://github.com/Partyschaum/haxe/blob/master/getenvaddr.c

Shellcode - The NOP Sled

It can be hard to get exact memory locations
GDB environment = real

How can we account for this

Enter the NOP

Just moves onto the next instruction

So use the dif between buf and shellcode len
Point EIP in the middle

And hopefully you hit the sled!

@
@
@
@
@
@
@
@

SHELLCODE

An Aside - Pitfalls

Causing argv|[0] to change

Offsets due to GDB

Python3 text encoding (REEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE)
Setuid code that doesn’t set its uid

Forgetting your endianness

Trying to use null bytes in string exploits (remember null termination?)

Example Time

https:/ /pastebin.com/EB4EBhWU

Example Time - Our Binary

1 #include <stdio.h=

2 #include =string.h=

3 #include =stdlib.h=

4 #include =unistd.h=

5

5]

7 void overflow(char #*source) {
8

9 char buf[128];

10

11 strcpy(buf, source);

e

13 printf("Buf: %s\n", buf);
14

15 }

16

17

18 int main(int argc, char **argv) {
19
20 setuid(o);
21
22 printf("Arg: %s\n", argv[1]);
]
24 overflow(argv[1]);
25
26 return ©:

https://pastebin.com/EB4EBhWU

Example Time - Compilation and Execution

Need to turn off some modern protections

ASLR needs to be off

echo 0 > /proc/sys/kernel/randomize_va_space

And compile with

gcc vuln.c -0 vuln -m32 -fno-stack-protector -z execstack

Give 1t the setuid bit so it can run as root (the setuid function in C earlier)
chmod 4777 ./vuln

@
@
@
@
@
@
@

Example Time - Demo

& Now lets use this to go from user "kek" to root!

® Demo time

& Shellcode used: http://shell-storm.org/shellcode/files/shellcode-811.php

¢ And there we go, a simple stack overflow

http://shell-storm.org/shellcode/files/shellcode-811.php

Next Week

Next Week

Practical session!

You'll need a laptop (can work in pairs)

AND A WORKING VIRTUAL BOX (We'll provide the VM image)

If you are unsure of virtual box, please ask today so we can help before next week

Macs, I'm not sure how to fix them, one day I'll actually save the link

@
@
@
@
@
@

There will be a provided VM with various challenges, each will let you access the next

Some Extras

DC44114
g o o

A local defcon grou
5 P @ _shefesh you should come join us on the

Next event on the 28th 28thT .

Down 1n the city 6.30 - 8 © w o @

Register at https://tinyurl.com/y621f8zr = -

The next event will be held on Thursday 28th February at Electric Works, Sheffield,

ItS free! sign up details below.

Thank you to @EgressSoftware for sponsoring 6

Let us knOW if you're gOing, We Can try tO meetup eventbrite.com/e/defcon-sheff...

>L (Corrected by S)

@
@
@
@
@
@

a4

SHEFFIELD

DEFCON Sheffield (DC44114) - Meetup #3

DC44114 started in 2018 to help fill the gap between Steelcon every year.
The group provides a regular meetup for anybody interested in learning

eventbrite.com

https://tinyurl.com/y62lf8zr

