
Ethical Student Hackers
Introduction to Binary Exploitation



● The skills taught in these sessions allow identification and exploitation of security vulnerabilities in 

systems. We strive to give you a place to practice legally, and can point you to other places to 

practice. These skills should not be used on systems where you do not have explicit permission 

from the owner of the system. It is VERY easy to end up in breach of relevant laws, and we can 

accept no responsibility for anything you do with the skills learnt here. 

● If we have reason to believe that you are utilising these skills against systems where you are not 

authorised you will be banned from our events, and if necessary the relevant authorities will be 

alerted. 

● Remember, if you have any doubts as to if something is legal or authorised, just don't do it until you 

are able to confirm you are allowed to.

The Legal Bit



● Before proceeding past this point you must read and agree to our Code of Conduct - this is a 

requirement from the University for us to operate as a society. 

● If you have any doubts or need anything clarified, please ask a member of the committee.

● Breaching the Code of Conduct = immediate ejection and further consequences.

● Code of Conduct can be found at 

https://shefesh.com/downloads/SESH%20Code%20of%20Conduct.pdf

Code of Conduct



Before We Begin

● This session has previously been run as 2 parts

● Therefore condensing it to 1 has required some assumption of knowledge

● So if something isn’t clear, please ask!



Memory



● When we talk about memory, we mean RAM not storage 

● When a binary is executed it needs to be loaded into memory

● Stores instructions and data

● We address with hex, e.g 0xbfab15ce

● Operating system maps virtual memory onto physical

● Remember at the end of the day, 

● Data, instructions, are all just 0s and 1s (we'll look at them in hex)

● EVERYTHING is just data (example later)

Memory - Overview



● Process memory is segmented into various 

sections

● .text - Basically where a programs code is

● .data - Initialised global variables 

● .bss - Uninitalised global variables

● The heap - Where dynamically allocated 

memory goes

● The stack - Contains details about subroutines 

(functions) of a program

Memory - Layout

High 

Addresses

Low

Addresses



● Used for data in program functions

● Last in First out (LIFO) structure 

● Grows from high memory to low

● Stores local variables

● Made up of various "stack frames"

● The exploits we are looking at use the 

stack

Memory – The Stack

https://www.tutorialspoint.com/data_structure

s_algorithms/stack_algorithm.htm



● Collection of data for one function call

● Includes - return address, argument 

variables, local variables, saved registers

● The important parts for us

● Local variables and the return address 

BOTH reside on a stack frame

● The return address ends up in the EIP 

register!

Memory – Stack Frames

https://www.cs.auckland.ac.n

z/software/AlgAnim/stacks.ht

ml

Note: LIFO 

means p was 

declared 

BEFORE q

Note this graphic, and the next few 

have high addresses at the top, not 

bottom



● The local variables are on the stack frame

● Along with the return address

● Return address ends up in EIP register (The one 

that controls execution)

● Remember, data will be PUSHED onto the stack

● E.g arg1 went on first, local var 3 last

● Can anyone guess the potential problem here?

Memory – Stack Frames in Practice

https://i.stack.imgur.com/X

Doh3.png



Stack 
Overflows



● This first pushes space (4 bytes) for the int 

to the frame

● Then 16 bytes for the char buffer

● What if we give it more than 16 bytes?

● If we imagine that "number" is "local var 2"

● And "buf" is "local var 3"

● What if we give "buf" 20 bytes of data?

● It will OVERFLOW into the space for 

"number"

● Anyone see where this is going?

Stack Overflows – It Begins



● If we can control EIP

● We can control the next instruction

● And redirect execution

● EIPs value comes from the stack

● The "Return Address"

● If we overflow a variable enough

● We can overwrite EIP

● And then we own the program

● That is a stack overflow…. But what do 

we do with it?

Stack Overflows – Gaining Control 



Shellcode



● Shellcode is the payload we want to execute

● We redirect execution into the shellcode to run it

● Often the hex representation of instructions

● This executes execve to spawn a shell

Shellcode – What is It?



● Pop a shell

● Spawn a reverse shell

● Elevate privileges

● Add a user

● Well….anything really

● http://shell-storm.org/shellcode/

● Msfvenom

Shellcode – What Can it Do?

http://shell-storm.org/shellcode/


● There are 2 common places to store shellcode

● In the buffer, before the EIP overwrite

● Where we point EIP back into the buffer

● (Sometimes shellcode goes after EIP)

● Or in an environments variable

● It is possible to locate where an environment 

variable will be in memory!

● https://github.com/Partyschaum/haxe/blob/m

aster/getenvaddr.c

● Then point EIP at the environment variable

Shellcode – Where Can it Go?

https://github.com/Partyschaum/haxe/blob/master/getenvaddr.c


● It can be hard to get exact How can we 

account for this

● Enter the NOP 

● Just moves onto the next instruction

● So use the dif between buf and shellcode len

● Point EIP in the middle

● And hopefully you hit the sled!

● memory locations

● GDB environment != real 

Shellcode – NOP Sleds



Practical 
Demo



Demo – The Binary



● Need to turn off some modern protections

● ASLR needs to be off

● echo 0 > /proc/sys/kernel/randomize_va_space

● And compile with

● gcc vuln.c -o vuln -m32 -fno-stack-protector -z execstack

● Give it the setuid bit so it can run as root (the setuid function in C earlier)

● chmod 4777 ./vuln

Demo – Compilation and Setup



● Now lets use this to go from user “lowpriv" to root!

● Demo time

● Shellcode used: http://shell-storm.org/shellcode/files/shellcode-811.php

● And there we go, a simple stack overflow

http://shell-storm.org/shellcode/files/shellcode-811.php




Any Questions?

www.shefesh.com
Thanks for coming!


