
Navigating the File System
Category Experience Level Author

Linux Complete Beginner Nick Ruffles

Contents
Bash
File system structure
Listing files
Displaying contents of files
Creating and editing files
Moving removing and copying files
Changing user
Locating files and text

Bash
First of all, we need to know the 'shell' that we will be using. Bash is a binary
(application) that comes pre-installed in most Linux operating systems. It is a way to
directly interface with programs and files on the computer, and hence is very useful for
controlling what the computer does.

This is what bash should look like on most installations. You can access bash via the
GUI by searching for 'terminal' in the Linux application searcher (Press the windows
key or the mac equivalent).

File system structure

There are multiple directories within the 'root' Top level) directory of the Linux file
system, each with a specific purpose. In Linux and UNIX everything is a file, even
folders. There is no such thing as a registry such as in Windows, it's just a file system
which makes life easier for us.

Files and folders are neatly sorted into different folders in the root directory, which
makes finding those files easier in the future for us and also other people.

/bin

The bin directory stores binaries (applications) that the user is going to be able to
use.

/etc

The etc directory or 'etcetera' directory stores configuration files, this is where all
the user changeable options are stored. For example /etc/passwd stores the
home directories, uid, names and descriptions of the users on the machine.

/home

The home directory simply stores all of the users' home directories.

/root

The root directory stores the home directory for the root (admin/superuser) user.

/opt

The opt directory stores 'optional' software. This will be applications such as
Discord or Spotify that are not installed directly via a package manager.

/usr

The usr directory stores user binaries and program data.

/sbin

The sbin directory contains all of the binaries that the root user should have
access to and run.

/var

The var directory contains all variable information, this tends to the the files used
while a process is running and needs to store data to the disk temporarily.

Listing files
First we want to be able to see what files we have access to, the ls command allows
us to see the files in our current working directory. In the following example I will be in
the ~/SESH directory. I will explain this a bit later.

As you can see we can see some of the files in this directory, but this isn't all of the
files. By default, ls doesn't show all hidden files. To show all files AND hidden files we
can use the -a flag.

Now this shows us that we have access to the . and .. directories, along with the
.hidden_passwords.txt file. The . stands for the current working directory, while ..
stands for the directory above the current working directory (The parent directory).

We can also use ls -la to list more information about each file, including who owns
that file, the size of the file in bytes, the time/day it was created and also the
read/write/execute permissions about the file. More on the permissions later.

Changing directory
We can use the cd to change directory, fairly self explanatory. Typing just cd will take
you to your home directory, similar to in Windows. You can also use the ~ prefix to
denote your home, for example cd ~/SESH will go to the SESH folder within the home
directory.

In Linux we can specify either relative paths or absolute paths. Relative paths use the
current directory to calculate what folder/file to access, while absolute paths specify
the whole path starting from the root directory. Below is an example of a relative path
(top) and an absolute path (bottom).

Displaying contents of files
We can use the file command to see what the contents of a file is. It can tell us if the
file is an executable binary, if it's an image, if it just contain text along with a load of
other different file formats. We do this because we don't want to try and display a
binary file to our terminal, as it will fill our screen with junk and it can often break our
terminal.

To display the contents of files, we use the cat command. It's fairly simple, and you'll
find yourself using this command a lot.

Creating and editing files
We can create a new empty file by using the touch command.

To edit this file, we can use a terminal text editor called nano , it is possibly the easiest
text editor to use in Linux. It allows us to insert, copy, paste, delete along with a load
of other functions. To edit the file we just created, we will type nano new_file.txt If
the file hasn't already been made, then saving the file will create the file).

Now we can see the contents, we can type anything to be put inside this file. If we
want to save the file we can use the CTRL + O keyboard shortcut to output the file,
enter the name you want to save it as then press ENTER to save the file.

After we have saved the file, press CTRL + X to exit nano.

You can see the other keyboard shortcuts in the action bar at the bottom of the nano
screen.

Moving, removing and copying files
Now that we have a couple of files, we can try copying, moving and deleting them.

We can copy files by using the cp command, simply enter the file you want to copy
and then it's destination.

We can move a file by using the mv command, similar to cp , we enter the file we want
to move then it's destination. This command can also be used to rename files.

To remove a file we can use the rm command followed by the file or files to remove.

Changing user

We are also able to change the user account that we are using, to do this we generally
need to know the password to the account we are trying to access (Except if you are
the root user). We can use the su command to switch user, simply entering su - root
will try and switch you to be the root user account (although we could choose any
account we know the password to). It will prompt you for the password. This would
allow us to execute commands on behalf of that account, therefore potentially giving
us access to more data and files.

We can also use the sudo command to run commands as the root user, you'll quite
often see people use sudo when a higher level of privilege is needed to run a
command. sudo works slightly different to su in that if you are part of a wheel or
sudo group it means you can run sudo with your own password instead of the root
password. The wheel and sudo groups are set by an administrator and should only be
given to trusted individuals, as it effectively makes them an administrator on that
computer.

Locating files and text
The find command is incredibly useful for finding and filtering files on the Linux
system, it allows you to filter by the name, creation date/time, permissions and owners
among a load of other filters. This all allows you to easily find files on the system in a
relatively quick amount of time. Use the man find command to see more info about
the find command

For example, find / -name "File4.sh" would find all files where the name of the file
contains passwd . This will, however, output some permission denied errors. To mute
the permission denied errors, we can put 2>/dev/null on the end of the command.
This simply tells the errors (using file descriptor 2 which is standard error) to redirect
to /dev/null Unix equivalent to the void).

We can also use wildcards within the search if we don't know the full name of the
file/directory to find: find / -name "File4.*"

Now it's all good and well trying to find files based on names and permissions, but
what about if we want to find text within a load of files? For that we can use the grep
command. Grep allows us to search through one or multiple files for text or regular
expressions. To search through a single file for a string we can type grep "Search
term" /path/to/file . To search through multiple files recursively we can use grep -r
"search term" /path/to/directory . The grep command is increadiby useful, you will
likely find yourself using it a lot in Linux.

