
Ethical Student Hackers
Web Hacking

Slides: shefesh.com

● The skills taught in these sessions allow identification and exploitation of security vulnerabilities in
systems. We strive to give you a place to practice legally, and can point you to other places to
practice. These skills should not be used on systems where you do not have explicit permission
from the owner of the system. It is VERY easy to end up in breach of relevant laws, and we can
accept no responsibility for anything you do with the skills learnt here.

● If we have reason to believe that you are utilising these skills against systems where you are not
authorised you will be banned from our events, and if necessary the relevant authorities will be
alerted.

● Remember, if you have any doubts as to if something is legal or authorised, just don't do it until you
are able to confirm you are allowed to.

● Relevant UK Law: https://www.legislation.gov.uk/ukpga/1990/18/contents

The Legal Bit

https://www.legislation.gov.uk/ukpga/1990/18/contents

● Before proceeding past this point you must read and agree to our Code of Conduct - this is a
requirement from the University for us to operate as a society.

● If you have any doubts or need anything clarified, please ask a member of the committee.

● Breaching the Code of Conduct = immediate ejection and further consequences.

● Code of Conduct can be found at https://shefesh.com/conduct

Code of Conduct

● GET requests
● SQL Injections
● Cookies
● Cross Site Scripting

● Parameters can be given when loading page
● A GET request adds these to the end of a URL using ? = & signs

○ ? starts first parameter name
○ = assigns the value
○ & goes before each subsequent parameter

● You can edit these parameters in the URL (activities fair)
● POST sends values but not put in URL

○ Why is this useful?

GET Requests

https://duckduckgo.com/?t=ffab&q=shefesh

● https://www.youtube.com/watch?v=dQw4w9WgXcQ

● https://www.google.co.uk/search?q=ShefESH&sca_esv=568184447&source=hp&ei=BIg…&iflsig=AO
6…&ved=0ah…&uact=5&oq=ShefESH&gs_lp=Egd…

GET Examples

https://www.youtube.com/watch?v=dQw4w9WgXcQ

SQL - Structured query language

Used to retrieve or modify data in databases

SELECT [fields] FROM [table] (WHERE [condition]);

SELECT * FROM users WHERE admin = true;

SQL

SELECT INSERT INTO DELETE

UNION UPDATE

https://www.w3schools.com/sql/

SELECT * FROM customers WHERE

SQL Injection - Exploitation of SQL queries with unsanitized user input

In-band SQLi

● Attacker is able to use the same communication channel to both launch the attack and gather
results

Inferential SQLi

● attacker is able to reconstruct the database structure by sending payloads, observing the web
application’s response and the resulting behavior of the database server

Out-of-band SQLi

● an attacker is unable to use the same channel to launch the attack and gather results

SQLi

Bypassing a login form

● A login query may look like this:

○ SELECT * FROM users WHERE username = ‘$username’ AND password =

‘$password’;

SQLi

Data exfiltration

● A search query may look like this:

○ ”SELECT * FROM products WHERE name LIKE ‘%” + user_input + “%’;”

SQLi

Attack

● To do an SQLi attack, you have to “trick” the server into running your SQL

command.

○ ”SELECT * FROM products WHERE username=’’ OR 1=1 -- ‘ and password

=’$password’

SQLi

Cross Site Scripting (XSS) - Sending of malicious code to websites via unsanitized
user input

XSS

● DOM - an element in the Document Object Model is

changed by a feature on the page - e.g. a button

● Reflected - the payload is delivered in the URL and

then rendered on the page - e.g. a search bar

● Stored - the payload is saved to a persistent

storage location and later rendered - for example,

a commenting system

Self retweeting XSS Attack in Tweetdeck

DOM XSS

Select your language:
<select><script>
document.write("<OPTION
value=1>"+decodeURIComponent(do
cument.location.href.substring(docu
ment.location.href.indexOf("default="
)+8))+"</OPTION>");
document.write("<OPTION
value=2>English</OPTION>");
</script></select>

XSS

Invoked with
http://www.some.site/page.html?default=
French

XSS Attack
http://www.some.site/page.html?default=
<script>alert(document.cookie)</script>

Reflected XSS

<% String eid =

request.getParameter("eid"); %>

Employee ID: <%= eid %>

Display employee id entered into

HTTP request

XSS

Usually used in phishing

Send via phishing
http://www.some.site/page.html?eid
=<script>alert(document.cookie)</sc
ript>

Stored XSS

$sql = "INSERT INTO MyGuests

(firstname, lastname, email)

VALUES ($_GET[‘firstname’],

$_GET[‘lastname’], $_GET[‘email’])";

Enter guest into database

<?php echo(“<p>” . $email . “</p>”); ?>

XSS

Invoked with
http://www.some.site/add_guest?firs
tname=John&lastname=Doe&email=t
est@test.com

XSS Attack
http://www.some.site/add_guest?firs
tname=John&lastname=Doe&email=
<script>alert(document.cookie)</scri
pt>

Preventing XSS

DOM based XSS - HTML encoding and JavaScript encode all untrusted input

https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html#guideli
ne

Reflected & Stored XSS - Deny all untrusted data where possible, HTML encode,
attribute encode, JavaScript encode...Encode as much as possible!

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#xss
-prevention-rules-summary

XSS

Cookies are given to you by the server and store information about you in your browser

They often represent user sessions and privileges

You can modify cookies to whatever you want, but they are often signed for integrity

Example schemes include JWT tokens

https://jwt.io

You can view your cookies in the F12 > application screen

Cookies

https://jwt.io

Try out what you have learnt:
http://35.179.134.203:5000

Slides: shefesh.com

Practical

Upcoming
Sessions

What’s up next?
www.shefesh.com/sessions

1st October: Introduction to Linux

7th October: OSINT/Reconnaissance

Any Questions?

www.shefesh.com
Thanks for coming!

