
Fundamental Skills - Understanding
HTTP Requests

Category Experience Level

Web Complete Beginner

Contents
Fundamental Skills - Understanding HTTP Requests

What is a HTTP Request?
Web Servers
HTTP Requests
HTTPS

Types of HTTP Request
Elements of a HTTP Request

Common Headers
Response

Making a HTTP Request
Going Further
Worksheet

What is a HTTP Request?
When computers communicate with each other over the internet, they require a set of
rules to govern how this communication should take place.

These rules are called protocols, and different protocols exist for many different
communication methods and purposes. Hypertext Transfer Protocol (HTTP is one of
the most common protocols, and is used to display and interact with websites.

Web Servers

When a computer hosts a website, it will use some sort of HTTP Server technology to
do so. There are many different pieces of software that can do this:

an extremely simple server can be hosted with Python's SimpleHTTPServer class
an Apache server, which includes various features such as error handling and
logging
a framework such as Laravel can create a complex server that hosts PHP files

Whatever software is chosen, a port on the computer will be exposed to the public
internet, and the computer becomes known as a webserver.

We will talk more about addresses, ports, and protocols more in a later lesson - for
now, you just need to know that HTTP can run as a service on a webserver, and we
can communicate with that webserver either using its IP address or a domain name for
the website.

HTTP Requests

When we have a server running and we have its address, we can send it a HTTP
request.

A HTTP Request can be used to interact with a website in many different ways. It can:

request a specific page's content
request a change, e.g. the creation, modification, or deletion of a resource
attempt to upload a file

Similarly, the server can respond in several different ways. It can:

cause a redirect to a new page
mark an action as forbidden
request authorisation for an action
indicate that an error has occurred

In practical terms, whenever you visit a website (say example.com) your browser
makes a HTTP request to that server for the specific page on that domain that you
requested (e.g. http://example.com/info). The server will respond to this request,
likely with some HTML code that your browser will then render.

When you submit data to this website, for example by logging in at
http://example.com/login , your browser will make a different type of request, and the
webserver may respond in a different way.

HTTPS

Hypertext Transfer Protocol Secure (HTTPS is a similar protocol to HTTP the main
difference is that HTTPS traffic (i.e. requests and responses) is encrypted.

This means that the contents of a request (for example the specific file that is being
requested, or login details that are being submitted) cannot be read by people who are
monitoring traffic on a network.

Encryption is usually done by an algorithm called TLS, but may also use the older
deprecated SSL algorithm.

Types of HTTP Request
A request can have many methods, depending on its purpose. These methods are
often referred to as verbs.

GET requests are usually to request a resource, such as the contents of a webpage.
For example, when you visit http://example.com in your browser, you are actually
making a HTTP GET request for the file / under the hood (where / is just shorthand
for http://example.com/ , the site's index)

POST requests are usually used to submit data. For example, you may submit a POST
request to http://example.com/login with the data
username=janedoe&password=securepassword . The server will then process this data
and decide whether to let you in or not. It may respond with a new page if you're
successful (for example redirecting to /profile), or with some HTML code telling you
your password is wrong.

PUT requests are used to write new data to the webserver - for example, rather than
simply using a POST request to ask the server a question (like "are my login details
correct?"), you might use a PUT request to write some new data, like a database entry
or a file. POST requests can actually do a lot of the things that PUT requests can do,
and due to their versatility are used more commonly.

DELETE requests have a similar use case to PUT requests - they can remove data
from a server, but their purpose can also be achieved by a POST request with some
backend processing. For example, a POST request to /delete on a server could
trigger to server to make an equivalent action.

There are many other HTTP methods that have some other important uses. However,
the most important ones to remember are GET (for retrieving information) and POST
(for sending information).

Elements of a HTTP Request
A simple HTTP request can be represented like so:

GET /home HTTP/1.1

Host: example.com

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101

Firefox/78.0

The first line is known as the start line - it describes the request method (GET), the file
that's being requested (/home), and the protocol (HTTP/1.1).

The other lines are headers, which are used to pass extra information to the server.
The Host header, for example, specifies the domain that the HTTP request targets
(combined with the filename this gives example.com/home).

GET requests may also have a request body (containing parameters or data), but more
commonly will have parameters inside the file name, indicated by ? characters and
delimetered by & ; for example:

GET /profile?id=123456&show_secret_info=true HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101

Firefox/78.0

This GET request has two parameters in the URL id , which is equal to 123456 ; and
show_secret_info , equal to true .

POST requests have a similar structure, but more commonly have information stored in
the request body:

POST /update-profile HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:78.0) Gecko/20100101

Firefox/78.0

{"JSON":"{\"name\":\"Jane Doe\"}"}

Here we are POSTing a JSON, which is a structure of keys and values in pairs, that
might be used by the server to update our profile name.

Common Headers

Common headers include:

User-Agent - this header indicates the type of device or software that is making
the HTTP request. It is used by browsers and tools like Curl to identify
themselves, and can be used by the server to warn users about outdated
browsers or reject requests from suspicious users. However, it can be arbitrarily
set, so is not a good defence mechanism on its own

Content-Type - this indicates the type of data that is being sent. It is commonly
equal to text/html , but may also be set to application/x-www-form-urlencoded
(when submitting form data) or application/json when submitting data to an
API. Getting this header wrong is a common reason an exploit may fail
Authorization - this header is often used to store authorisation information,
such as cookies. However, cookies could be stored under any arbitrary name,
such as PHPSESSID , so being able to recognise what may be a cookie is a good
skill
PHPSESSID - a common header used in PHP-based applications for tracking user
sessions

Response

A HTTP response looks similar to a HTTP request:

HTTP/1.1 200 OK

Server: example.com

Date: Tue, 21 Sep 2021 20:28:59 GMT

Content-Type: text/html; charset=utf-8

Set-Cookie: XSRF-TOKEN=ghTVo....b7ivy

<p>Hello World!</p>

The first line contains the protocol and a status code, in this case 200 OK - this
indicates whether the request was successful.

Common responses include:

301 - a redirect to another page
403 - forbidden (i.e. the server has denied access to the resource)
404 - the resource was not found
500 - an internal server error - this is often a good sign when testing for
malicious user input

The response may also contain headers such as Set-Cookie , which is then used by
the browser to store a cookie locally, or response data such as some JSON or HTML
code.

Making a HTTP Request
It isn't just browsers that can make HTTP requests - there are many tools capable of
this as well.

Curl is a tool made for making requests in the command line, and has a multitude of
options including the ability to set headers (e.g. user agents and cookies), proxy

requests, POST data, follow redirects, and more.

Feroxbuster is a tool for making lots of HTTP requests in order to discover a site's
contents. It is only to be used against sites you have explicit permission to test, as it
creates a lot of network traffic.

Burp Suite is a tool for viewing HTTP requests as you make them, but it can also edit
and resend HTTP requests with its Repeater function.

Netcat is a tool for making various network connections, and it can be used to
manually make a HTTP request by sending a start line when a connection is opened.
Netcat is sometimes useful for determining whether an obscure port is a webserver or
not.

We will cover all of these tools in more detail in later lessons.

Going Further
To learn a bit more about the structure of a HTTP request, see IBM's guide or Mozilla's
Articles

To read more about the mechanics of a HTTP request on a lower level, read this:
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Response_syntax

HTTP requests are just one layer of the OSI model - to learn about this crucial piece of
networking theory, read this: https://www.networkworld.com/article/3239677/the-osi-
model-explained-and-how-to-easily-remember-its-7-layers.html

Worksheet
 Make a request to shefesh.com and view it with your Developer Tools' Network

tab. Can you identify any important headers that tell you anything about the site?
 Can you find any requests that the server responds to with non-HTML content?

https://www.ibm.com/docs/en/cics-ts/5.3?topic=protocol-http-requests
https://developer.mozilla.org/en-us/docs/web/http
https://en.wikipedia.org/wiki/hypertext_transfer_protocol#response_syntax
https://www.networkworld.com/article/3239677/the-osi-model-explained-and-how-to-easily-remember-its-7-layers.html
https://shefesh.com/

